Segment a masked 3T T1 image (containing intracranial volume only) using sb-T1seg_3T, assigning each voxel to one of the following values/tissue classes:
3: gray matter (GM)
4: white matter (WM)
5: cerebrospinal fluid (CSF)
0: background
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> segment = SegmentTissueClasses()
>>> segment.input_T1_image = '{session}_T1_TIV.nii.gz'
>>> segment.cmdline
'T1seg_3T {session}_T1_TIV {session}_T1_TIV_seg -bgfw 0 5 4 3'
>>> segment.run()
Segment sulcal cerebrospinal fluid (sCSF) and gray matter.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> segment = SegmentLesionZone()
>>> segment.input_segmentation = 'mni_icbm152_T1_tiv.nii.gz'
>>> segment.cmdline
'SCSFGM mni_icbm152_T1_tiv mni_icbm152_T1_tiv_seg -bgfw 0 5 4 3'
>>> segment.run()
Segment a masked 3T T2 or PD image (containing intracranial volume only) using sb-Lsegment, assigning each voxel to one of the following values/tissue classes:
1: lesion
0: background
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> segment = SegmentLesions()
>>> segment.input_image = '{session}_T1_TIV.nii.gz'
>>> segment.cmdline
'Lsegment m{session}_T1_TIV {session}_T1_TIV_lesions'
>>> segment.run()
Set image voxels corresponding to select classes from a segmentation to zero using sb-mask_img.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> mask = MaskClasses()
>>> mask.input_image = '{session}_T1.nii.gz'
>>> mask.input_segmentation = '{session}_T1_seg.nii.gz'
>>> mask.mask_classes = [0, 5]
>>> mask.cmdline
'mask_img {session}_T1.nii.gz {session}_T1_seg.nii.gz -o {session}_T1_masked.nii.gz -m 0 5'
>>> mask.run()
Perform 2D dilation on voxels in the input segmentation that have a value equal to voxel_class using a cross (1) or ball (2) structuring element with radius equal to dilation_radius. Values in the input image unaffected by the dilation operation remain unchanged.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
alias of DilateClassInputSpec
Fill holes in a segmentation using sb-fill_csf_seg_holes.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> fill = FillHolesInSegmentation()
>>> fill.input_segmentation = 'mni_icbm152_T1.nii.gz'
>>> fill.cmdline
'fill_csf_seg_holes mni_icbm152_T1_seg.nii.gz mni_icbm152_T1_mask.nii.gz 5 mni_icbm152_T1_seg_filled.nii.gz'
>>> fill.run()
Relabel black holes in a segmentation using sb-relabel_black_holes.
CSF and VCSF must be uniquely labeled on the T1 segmentation. Any non-zero value in the lesion segmentation that corresponds to a CSF voxel on the T1 segmentation will be relabelled as a black hole.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> relabel = RelabelBlackHoles()
>>> relabel.input_segmentation = '{session}_T1_seg_vcsf.nii.gz'
>>> relabel.input_lesions = '{session}_T1_lesions.nii.gz'
>>> relabel.csf_value = 5
>>> relabel.bh_value = 2
>>> relabel.cmdline
'relabel_black_holes -t1seg {session}_T1_seg_vcsf.nii.gz -lseg {session}_T1_lesions.nii.gz -csf 5 -bh 2 -out {session}_T1_seg_vcsf_bh.nii.gz'
>>> relabel.run()
Relabel white matter hyperintensities (WMH) and black holes (BH) in a segmentation with respect to their proximity to ventricular CSF (vCSF), using sb-relabel_ventricular_wmh.
Any lesion in the lesion segmentation connected in 3D to ventricular CSF in the T1 segmentation is relabelled as periventricular by adding the offset value to each connected voxel.
Input attributes:
Parameters: |
|
---|
Output attributes:
Parameters: | output_image – Output image as an existing file name |
---|
Example:
>>> relabel = RelabelVentricularProximity()
>>> relabel.input_segmentation = '{session}_T1_seg_vcsf.nii.gz'
>>> relabel.input_lesions = '{session}_T1_lesions.nii.gz'
>>> relabel.vcsf_value = 7
>>> relabel.offset_value = 2
>>> relabel.cmdline
'relabel_black_holes -t1seg {session}_T1_seg_vcsf.nii.gz -lseg {session}_T1_lesions.nii.gz -vcsf 7 -offset 2 -out {session}_T1_seg_vcsf_vprox.nii.gz'
>>> relabel.run()